STEM CELLS AND DEVELOPMENT
Volume 21, Number 14, 2012

© Mary Ann Liebert, Inc.

DOI: 10.1089/scd.2011.0722

COMPREHENSIVE REVIEW

Same or Not the Same? Comparison of Adipose
Tissue-Derived Versus Bone Marrow-Derived
Mesenchymal Stem and Stromal Cells

Marius Strioga,” Sowmya Viswanathan? Adas Darinskas® Ondrej Slaby,*® and Jaroslav Michalek*®-’

Mesenchymal stem/stromal cells (MSCs) comprise a heterogeneous population of cells with multilineage dif-
ferentiation potential, the ability to modulate oxidative stress, and secrete various cytokines and growth factors
that can have immunomodulatory, angiogenic, anti-inflammatory and anti-apoptotic effects. Recent data indi-
cate that these paracrine factors may play a key role in MSC-mediated effects in modulating various acute and
chronic pathological conditions. MSCs are found in virtually all organs of the body. Bone marrow-derived MSCs
(BM-MSCs) were discovered first, and the bone marrow was considered the main source of MSCs for clinical
application. Subsequently, MSCs have been isolated from various other sources with the adipose tissue, serving
as one of the alternatives to bone marrow. Adipose tissue-derived MSCs (ASCs) can be more easily isolated; this
approach is safer, and also, considerably larger amounts of ASCs can be obtained compared with the bone
marrow. ASCs and BM-MSCs share many biological characteristics; however, there are some differences in their
immunophenotype, differentiation potential, transcriptome, proteome, and immunomodulatory activity. Some
of these differences may represent specific features of BM-MSCs and ASCs, while others are suggestive of the
inherent heterogeneity of both BM-MSC and ASC populations. Still other differences may simply be related to
different isolation and culture protocols. Most importantly, despite the minor differences between these MSC
populations, ASCs seem to be as effective as BM-MSCs in clinical application, and, in some cases, may be better
suited than BM-MSCs. In this review, we will examine in detail the ontology, biology, preclinical, and clinical
application of BM-MSCs versus ASCs.

Introduction supports the “stemness,” that is, the long-term survival with

self-renewal capacity and multipotency of an unfractioned

ORE THAN 40 YEARS ago, Friedenstein et al. originally

described nonphagocytic, nonhematopoietic, fibroblast-
like cells, which were isolated ex vivo in small numbers by
plastic adherence from rat whole bone marrow cultures [1]. The
cells were clonogenic, formed colonies in culture conditions
(when established at clonal density), could differentiate in vitro
into bone, cartilage, adipose tissue, tendon, muscle, and fibrous
tissue, and were defined as colony-forming unit fibroblasts [1-
3]. Since then, these cells have been extensively investigated
and given various names, until Caplan proposed the definition
“mesenchymal stem cells” (MSCs) in 1991 [4], which gained
common usage. However, the use of this term has been long
debated, as there is a lack of convincing in vivo data that

plastic-adherent marrow cell population [5]. In fact, Sacchetti
et al. have convincingly demonstrated the existence of bona
fide self-renewing, CD146-expressing stem cells in a plastic-
adherent marrow cell population using an in vivo model of
immunocompromised mice [6]. Most likely, the “true” stem
cells constitute only a subset of the bone marrow cell popula-
tion, as selected by rapid plastic adherence, implying that this
cell population is heterogeneously composed of bona fide stem
cells, their progeny (with multilineage differentiation potential,
but without salient characteristics of stem cells), and possibly
senescent cells [5,7,8]. Based on such a conception, the Me-
senchymal and Tissue Stem Cell Committee of International
Society for Cellular Therapy (ISCT) proposed that marrow
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plastic-adherent cells generally described as “mesenchymal
stem cells” should be retermed “multipotent mesenchymal
stromal cells,” while the term “mesenchymal stem cells” should
be reserved for a subset of these cells that show stem cell ac-
tivity by clearly stated criteria [7]. Since the acronym MSC may
be used to define both cell populations, the combined defini-
tion “mesenchymal stem/stromal cells” is probably more rel-
evant, especially when the true “stemness” of the whole MSC
population is not proved.

Although MSCs were initially isolated from bone marrow
cultures, currently it is thought that they reside within the
connective tissue of virtually all organs [9], including adipose
tissue [10], and constitute a whole complex system, diffused
throughout the body [11]. MSCs have also been isolated from
human placenta (MSCs of both fetal and maternal origin)
[12], umbilical cord blood [13], umbilical cord/Wharton’s
jelly [14], amniotic fluid [15], amnion [16], and various fetal
tissues, including blood, liver, bone marrow, spleen [17,18],
and lung [19].

ISCT has provided 3 minimal criteria to define MSCs, in-
dependent of their source [20]: (1) plastic adherence in
standard culture conditions; (2) expression of nonspecific
markers CD105, CD90, and CD73 along with the lack of
expression of CD34, CD45, CD14 or CD11b, CD79a or CD19,
and class-II major histocompatibility complex (MHC-II)
molecules, mainly HLA-DR; and (3) differentiation into os-
teoblasts, adipocytes, and chondroblasts under specific
stimulus in vitro. There are several additional im-
munophenotypic markers (such as CD29, CD44, CD146,
CD166, CD271, etc.) that can be used to characterize the MSC
populations obtained from various sources [11,21,22]. Some
of these markers may allow for a more precise isolation of
MSCs compared with “traditional” markers; for example,
CD271 seems to be more specific to bone marrow-derived
MSCs (BM-MSCs) and enables a selective isolation of
BM-MSCs with a higher clonogenicity, lower hematopoi-
etic contamination [22], higher paracrine secretion of cyto-
kines, and significantly pronounced lymphohematopoietic
engraftment-promoting properties [23]. Another phenotypic
characteristic of MSCs is the lack of expression of costimu-
latory molecules (such as CD80, CD86, CD40, and CD40L),
even after interferon-y (IFN-y) stimulation. This is in contrast
to MHC-II molecules whose expression can be induced by
IFN-y stimulation [24].

It should be emphasized that the immunophenotype of
MSCs is dynamic and changes over the course of culturing;
some of these changes may represent alterations in the
biological features of MSCs [11], for example, the loss of
expression of CD90 [thymocyte differentiation antigen-1
(Thy-1)], CD15 [stage-specific embryonic antigen-1 (SSEA-
1)], and CD309 [fetal liver kinase-1 (Flk-1)] was shown to be
associated with the spontaneous neoplastic transformation of
murine, but not human, BM-MSCs after numerous passages
[25]. Human MSCs have largely been shown to be free of
such transformative events [26-28].

Current View to Origin and Physiological
Functions of MSCs

Although the immunophenotype of MSCs is quite well
characterized in vitro, much less is known about their in vivo
counterpart. The prevailing view is that all MSCs, irrespec-
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tive of their in vivo source, are of a perivascular origin and
may be regarded as a subset of pericytes (subendothelial cells
that lie on the abluminal side of blood vessel lining) [29,30].
Indeed, it was found that cultured pericytes derived from
various human fetal and adult tissues are adherent, display a
phenotype that is similar to MSCs (similar to MSCs, they
express CD73, CD90, CD105, and CD44 in situ), can differ-
entiate into osteocytes, chondrocytes, and adipocytes under
certain culture conditions or in long-term cultures, and show
evident myogenic potential in vitro and in vivo [29,31];
similar to MSCs, they can also secrete multiple growth fac-
tors and cytokines [31]. Caplan proposed that once a pericyte
is released from a blood vessel (ie, displaced from its natural
position) in the case of local injury, it functions as an im-
munomodulatory and trophic MSC, which actively partici-
pates in (1) suppression of immune surveillance of the
injured tissue in order to impede autoimmune reactions; (2)
wound repair and tissue regeneration; and (3) angiogenesis
[32]. In this regard, MSCs act as site-regulated natural
“drugstores”; however, if the injury is extensive and/or oc-
curs in elderly individuals, then the natural supply of MSCs
may be insufficient and, therefore, needs to be supplemented
by their local or systemic delivery [33]. The presence of ac-
tivated MSCs at sites of inflammation or tissue damage is
quite well understood, given that pericytes would be re-
leased from their endothelial interactions in vascularized
locations; however, the relative number and source of MSCs
that are mobilized from either remote or proximate vascu-
larized sites remain to be determined [34]. Sacchetti et al.
have clearly demonstrated that CD146-positive clonogenic
human BM-MSCs with self-renewal capacity (as determined
in vivo) reside in the “pericytic location,” that is, in the ab-
luminal side of the bone marrow sinusoidal wall, and play a
key role in the formation of a special microenvironment
(niche) for hematopoietic stem cells (HSCs) and hematopoi-
esis [6], lending much credence to the theory on the pericyte
origin of MSC.

Interestingly, Maumus et al. performed immunostaining
of intact human adipose tissue and demonstrated that native,
CD34-expressing adipose tissue-derived MSCs (ASCs) (clo-
nogenic and multipotential in vitro) are neither perivascu-
larly localized (the majority of them are scattered throughout
the stroma of adipose tissue with only a few being peri-
vascularly localized) nor express markers of pericytes (such
as CD140b, NG2, and a-smooth muscle actin) in situ, al-
though the expression of these markers appears on ASCs
during the in vitro culture process [35]. There are conflicting
data emerging from other groups; for example, Zannettino
et al. demonstrated that human ASCs are intimately associ-
ated with perivascular cells surrounding the blood vessels
[36]. They used a different set of antibodies than the previous
group focusing on stromal cell precursor antigen (STRO-1),
3G5, and CD146 and found that the ASCs isolated using
these cell-surface markers had characteristics of MSCs, were
clonogenic, and multipotential. Taken together, these find-
ings probably do not negate the pericytic origin of MSCs in
adipose tissue but rather suggest that once pericytes are re-
leased from the vascular wall and become MSCs, the latter
do not necessarily retain the entire phenotype and localiza-
tion of their ancestors (ie, pericytes). However, there is no
definitive answer for the pericyte origin of ASC, and further
assessment is needed. To make the picture more complex,
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recent data indicate that MSCs in various human tissues may
originate not only from pericytes (CD146"CD34 CD31"~
CD457), but also from a recently identified histologically and
phenotypically distinct subset of adventitial cells (CD34*
CD146 CD31 CD45"), which reside in the outermost layer
of larger vessels’ wall, natively express surface markers of
MSCs (such as CD90), and behave similar to MSCs in a long-
term in vitro culture [37,38].

Differentiation Potential of MSCs—How
Wide Is It?

Although minimal criteria defined by ISCT state that
MSCs should show trilineage differentiation into bone, car-
tilage, and adipose tissues in vitro, it has been shown that
under certain culture conditions, MSCs can differentiate into
other mesodermal tissues such as skeletal muscle [39], ten-
don [40], myocardium [41], smooth muscle [42], and endo-
thelium [43]. Furthermore, recent studies have indicated that
under certain culture conditions, in the presence of specific
mediators, MSCs may show plasticity, that is, the ability to
cross germinal boundaries and differentiate into cells of ec-
todermic origin, for example, neurons [44], and into cells of
endodermic origin, for example, various epithelial cells [45—
48]. However, the nonmesodermal differentiation of MSCs is
still controversial [5,21] in the absence of convincing in vivo
data.

There is some evidence that MSCs fuse with particular cell
types (eg, epitheliocytes) in vivo rather than transdiffer-
entiate [49]; however, other groups have shown that this is
not the case [47,50]. Recent in vitro data show that MSCs
may partially (not permanently) fuse with and transfer mi-
tochondria (or other cytoplasmic components) to fully dif-
ferentiated cells (such as cardiomyocytes) and induce their
reprogramming back to a progenitor-like state [51]. Thus, the
exact differentiation potential of MSCs is yet to be elucidated,
although there is some evidence that MSCs (or, at least,
particular subsets, most likely bona fide stem cells) tend to
posses some level of inherent plasticity, both in vitro and
in vivo [21,52]. It should be noted that the in vitro differen-
tiation potential of MSCs does not necessary predict or cor-
relate with their in vivo differentiation capacity [53,54].
Additionally, the differentiation efficiency of MSCs may vary
with age; for example, Zhu et al. showed that the osteogenic
potential of human female ASCs decreases with age, but the
adipogenic potential remains unchanged [55].

Several populations with a broader differentiation poten-
tial have been characterized. Jiang et al. were the first who
demonstrated at a single cell level the existence of rare plu-
ripotent stem cells (cultured from adult rodent bone marrow)
with the capacity to differentiate into neuroectodermal, me-
sodermal, and endodermal cell types, both in vitro and
in vivo. These cells were defined as multipotent adult pro-
genitor cells (MAPCs) [56]; their equivalents were also cul-
tured from mouse brain, muscle [57], pancreas, dermis,
human skin, and adipose tissue [29]. MAPCs are phenotyp-
ically and biologically distinct from MSCs; human MAPCs
can be expanded for more than 70 population doublings
without cytogenetic abnormalities [58-60]. MAPCs were
hypothesized to be embryonic stem cells reserved during
embryogenesis and retained in the tissues of the adult body
for future use [61]. However, this does not seem to be the
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case, as currently, there is no evidence that MAPCs exist in
vivo; they are isolated from MSC cultures after several
population doublings under specific conditions and, there-
fore, seem to be a product of culture-induced changes, such
as reprogramming and dedifferentiation, resulting from ge-
netic or epigenetic alterations [58,59]. Therefore, MAPCs may
be regarded as a mere culture artifact [62], although there is
some evidence that cells closely resembling murine MAPCs
may originate from a rare subset within mouse bone marrow
under specific MAPC culture conditions [58,63]. Various
other populations similar to MAPCs have been identified
and include, but are not confined to, marrow-isolated adult
multilineage inducible cells [64], very small embryonic-like
cells [65,66], and others. The origin of and relationship be-
tween these populations remain to be elucidated.

The Pleiotropic Role of MSCs in Tissue
Repair—Which Mechanism Predominates?

Since MSCs are able to differentiate into cells of various
tissues, it was thought that they were responsible for the
normal turnover and maintainance of adult tissues (at least
of mesenchymal origin), just as HSCs are responsible for the
turnover and maintainance of blood cells [32]. Since MSCs
can be easily isolated from bone marrow and other sources,
it was originally thought that after the delivery of culture-
expanded MSCs to the injured host, they would migrate to
the site of injury and directly differentiate into the cells of an
appropriate phenotype and function, thus contributing to the
repair of the injured tissue [67]. These expectations were
reinforced by evidence that injected MSCs preferentially
home to injured areas, in particular to the foci of hypoxia,
apoptosis, or inflammation [68].

MSCs were shown to demonstrate therapeutic efficacy in
animal models of meniscus injury [69], neurological disor-
ders [70], myocardial infarction (MI) [71], lung injury [72],
ischemic acute renal failure [73], and others. Clinical studies
have also shown that MSCs can be used safely and in some
cases effectively for the treatment of various conditions, in-
cluding osteogenesis imperfecta [74].

However, it eventually became evident that MSCs could
mediate robust tissue repair, but exhibited low or/and
transient engraftment into the injured tissue [75,76]. Fur-
thermore, several animal studies clearly demonstrated that
injected MSCs reconstituted the structure and function of the
injured organ without differentiation into (or fusion with)
specialized cells of that organ [73,77]. Many studies have also
demonstrated that MSC-conditioned media alone could have
therapeutic effects, for example, the stimulation of endothe-
lial cell proliferation and migration in vitro and in a hindlimb
ischemia model in vivo [78]. Collectively, these data suggest
that typically MSCs do not differentiate into specialized
resident cells of the injured tissue; rather, they exert their
reparative functions through paracrine effects [8,21,32,79].
Indeed, an analysis of human [80] and murine [81] MSC
transcriptome revealed that they express transcripts encod-
ing proteins involved in immunomodulatory and trophic
activities. Furthermore, there are data that MSCs may exert
their therapeutic functions through systemic (endocrine) ac-
tivity, and this provides an explanation, at least in part, for
how intravenously injected MSCs can act on distant injured
or diseased tissues [82], as data from animal studies have
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shown that often, most of the systemically administered
MSCs are entrapped within the lungs [83,84]. MSCs may also
exert their therapeutic activity through direct cell-to-cell
contact with the cells of the immune system [85,86] and/or
the tissue to be repaired [51].

The MSC-mediated trophic activities include (1) inhibition
of apoptosis and fibrosis (this limits the field of damage or
injury and ensures optimal wound healing with minimal
scarring); (2) stimulation of angiogenesis and recovery of
blood supply; (3) stimulation of recruitment, retention, pro-
liferation, and differentiation of tissue-specific and tissue-
intrinsic stem/progenitor cells [32,87]; and (4) attenuation of
oxidative stress [79].

MSC-mediated immunomodulatory activities include
suppression of naive and memory CD4" and CD8" T-cell
proliferation and differentiation, promotion of regulatory T-
cell expansion and enhancement of their immunosuppressive
activity, impairment of dendritic cell (DC) phenotype and
functions, and secretion of immunosuppressive substances
[such as nitric oxide (NO), prostaglandin E,, hepatocyte
growth factor, indoleamine 2,3-dioxygenase, etc.], and other
mechanisms as reviewed in detail in [88-90].

The immunomodulatory properties of MSCs likely play an
important role in protecting the injured organ from a potential
autoimmune attack (since many self-antigens may be abun-
dantly exposed during tissue damage) [32], as well as they may
have obvious therapeutic benefits in controlling graft-versus-
host disease (GvHD), solid organ allogeneic rejection [91], and
autoimmune diseases [88], as will be discussed later in this
review. On the other hand, it has been demonstrated that under
certain conditions, MSCs can act as proinflammatory cells and
even as efficient antigen-presenting cells that are able to present
intracellular antigens and cross-present extracellular antigens
with MHC- class molecules and induce specific CD8* T-cell
responses [92,93]. MSCs can also up-regulate the expression of
MHC-II molecules (on stimulation by IFN-y) and present exo-
genous antigens to CD4" T cells [92,94]. Thus, current data
suggest that immunosuppression is not an inherent constitutive
property of MSCs, that is, the acquisition of either immuno-
suppressive or immunostimulating properties by MSCs de-
pends on a complex and delicate balance between the multiple
stimuli of different origins within the context of the microen-
vironment [95]. The concentration and duration of the stimulus,
as well as the nature of signal involved (eg, infection vs. is-
chemia), seem to have an important role in MSC functional
polarization (reviewed in [34,95,96]). Besides, these microenvi-
ronmental factors, the concentration of MSCs at the site of in-
jury (MSC-to-lymphocyte ratio), may also play an important
role in their immunostimulatory versus immunosuppressive
polarization [97]. Furthermore, a tissue microenvironment may
“shape” not only the immunomodulatory properties of MSCs,
but also their overall secretory profile, depending on the kind
of damage in a given tissue [8].

Although the prevailing view is that MSCs help tissue
repair without directly contributing to it (reviewed in
[32,33]), the results showing that these cells (both human
and nonhuman) have the ability to differentiate into dis-
tinctive specialized cells in vivo [47,50,98-103] cannot be
completely ignored. Moreover, there are data stating that a
combined action of the paracrine effects of MSCs as well as
their differentiation into specialized cells may contribute to
the regeneration of the damaged tissue, as shown in a rat
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dilated cardiomyopathy model [104]. Furthermore, there is
some evidence that MSCs may need to be cocultured with
cells of a particular tissue (to mimic the tissue microenvi-
ronment) for the effective induction of differentiation into
cells of that tissue [45,105], or specific biomaterials may
need to be added to provide a scaffold that induces specific
differentiation [106]. However, it is crucial to confirm that
the differentiated progenies of MSCs adopt not only the
phenotype of particular specialized cells, but also gain their
function and persist for sufficient time in the restored
tissue, because some studies have shown that while MSCs
may acquire a differentiated phenotype, they lack the
functional activity of specialized cells [107,108]. It should be
also kept in mind that the differentiated progenies should
be derived from autologous or HLA-matched MSCs in or-
der to survive in an immunocompetent organism. Indeed,
Niemeyer et al. showed that in the great majority of cases,
differentiated osteoblasts from human MSCs (both BM-
MSCs and ASCs) were eliminated by the immune system of
immunocompetent mice, while undifferentiated MSCs
survived [109].

Biology of Human MSCs from Different Sources

MSCs from different sources share many biological fea-
tures, although there are some differences in (1) im-
munophenotype, for example, a proportion of ASCs is
positive for CD34, at least in early in vitro culture stages,
whereas MSCs from bone marrow or other sources do not
express this marker [11,110,111]; (2) proliferative capacity,
for example, Kern et al. compared MSCs isolated from bone
marrow, adipose tissue, and umbilical cord and found that
BM-MSCs had the lowest proliferative capacity (in terms of
both proliferation rates and number of cell doublings), while
umbilical cord-derived MSCs showed the highest prolifera-
tion potency [112]; (3) differentiation potential, for example,
it has been shown (using in vivo assays) that MSCs isolated
from dental pulp tend to preferentially differentiate into
dentin rather than bone, although grown and transplanted
under the same conditions as BM-MSCs [113]; (4) gene ex-
pression profile, for example, gene expression analysis of
BM-MSCs and umbilical cord vein MSCs indicated that the
former showed a higher expression of genes associated with
osteogenic differentiation, while the latter exhibited a higher
expression of genes involved in angiogenesis [114]; and (5)
utility for specific medical applications, for example, it was
demonstrated that ASCs show a significantly greater angio-
genic potential compared with BM-MSCs [115], and may,
therefore, be more effective in cardiovascular pathologies
associated with ischemia.

BM-MSCs and ASCs—the Most Prevalent MSCs
in Clinical Practice

Despite many unanswered biological questions around
MSC origin, their exact role, and mechanism of action in
various pathological conditions, they have already gained
acceptance in a number of clinical investigations over a
broad spectrum of indications. From the clinical perspective,
one of the most attractive properties of MSCs (besides their
ability to preferentially home to the sites of damage, tissue-
regenerative, and immunomodulating capacities, as already
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discussed) is their low immunogenicity (hypoimmunogeni-
city), which allows their safe therapeutic application in al-
logeneic, donor-mismatched [116-121], and even xenogeneic
[122,123] settings. There is some evidence, however, that
both murine [124] and human [125] nonself MSCs (at least
BM-MSCs) may be immunogenic in animal models; how-
ever, to our knowledge, clinical trials have not demonstrated
any adverse events associated with the use of allogeneic and
HLA-mismatched MSCs to date.

Since BM-MSCs were the first MSCs identified, they have
been extensively studied and are, therefore, best character-
ized. However, it was eventually found that MSCs can be
easily and safely isolated not only from bone marrow but
also from other sources, including adipose tissue [10], pla-
centa [12], umbilical cord blood [13], umbilical cord [14], and
dental pulp [113]. These alternative sources are very attrac-
tive, because bone marrow harvesting is rather invasive,
painful, and associated with potential donor-site morbidity
and potentially low yields. Thus, bone marrow aspirates
should be mostly reserved for hematopoietic stem cell
transplantation (HSCT) [85].

In 1976, adipogenic precursors were isolated from human
adipose tissue by plastic adherence [126]; however, in 2001,
ASCs were identified and characterized in human lipoaspi-
rates by Zuk et al. [10], and this led to a recognition of adi-
pose tissue as an alternative to bone marrow for MSCs. Large
amounts of ASCs can be readily isolated from subcutaneous
adipose tissue, which can be easily and repeatedly obtained
by lipectomy or even more often by liposuction, a minimally
invasive, safe, and well-established surgical procedure that is
widely performed in clinical practice; ~400.000 liposuction
surgeries are performed in the United States each year [127].
The removed excess adipose tissue is often discarded, as
medical waste, and can serve as a valuable source of ASCs
suitable for therapeutic applications [127].

Adipose tissue is composed of adipocytes and a hetero-
geneous cell population that surrounds and supports adi-
pocytes and on isolation is termed the stromal vascular
fraction (SVF) [128]. Mature adipocytes constitute less than
50% (generally about 20%-30%) of all cells in intact adipose
tissue; however; they are very large cells and occupy more
than 90% of adipose tissue volume [129,130].

The SVF is separated from mature lipid-laden adipocytes
by centrifugation (the supernatant contains low-density
floating adipocytes, whereas the SVF forms the denser cel-
lular pellet). ASCs are subfractionated from the SVF popu-
lation by plastic adherence in cultures (isolation and culture
protocols are briefly reviewed in [11]). Crude SVF contains
ASCs (about 30%—-40%), vascular endothelial cells and their
progenitors, vascular mural cells (smooth muscle cells and
pericytes), and various numbers of circulating blood-derived
cells such as leucocytes and erythrocytes [129-131].

Differences Between Human BM-MSCs
and ASCs

Although BM-MSCs and ASCs share many biological
features, there are also some differences between these dis-
tinct MSC populations. For instance, human ASCs are more
genetically and morphologically stable in a long-term culture
[132], display a lower senescence ratio, show a higher pro-
liferative capacity [112,132], and retain differentiation po-
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tential for a longer period in culture [132] compared with
human BM-MSCs. A very recent study clearly demonstrated
that human ASCs support hematopoiesis both in vitro and
in vivo and unexpectedly seem to exert this activity more
efficiently than human BM-MSCs [133].

Differences in localization and yield between
human BM-MSCs and ASCs

BM-MSCs reside in the bone marrow stroma in relatively
small quantities. It has been calculated that they constitute
about 0.001%-0.01% of the total marrow nucleated cells
[134], whereas the amount of ASCs is approximately 500-fold
greater when isolated from an equivalent amount of adipose
tissue [135,136]. This difference may be particularly relevant
for making ASCs more suited for clinical applications due to
their ease of accessibility. Additionally, sufficient numbers of
BM-MSCs may be more difficult to obtain from a conven-
tional marrow harvest, particularly from the elderly [85], as
the number of MSCs decreases with age [137]. Furthermore,
ASCs can be clinically used without expansion, if harvested
from a sufficiently large volume (typically hundreds of
mililiters of adipose tissue) of lipoaspirate [138]. It may be
presumed that the use of freshly isolated cells would be more
safe and efficacious compared with the cells expanded by
culture, as ex vivo manipulations may lead to the accumu-
lation of genetic and epigenetic alterations that may affect the
functional and biological properties of the cells [134], even
though human MSCs generally do not seem to undergo
malignant transformation in long-term in vitro cultures
[26-28] as well as in vivo [26,27]. Indeed, most clinical ap-
plications of ASCs are focusing on minimizing or even
eliminating cell expansion in vitro before the implantation of
the cells. Some clinical studies even apply freshly isolated
autologous crude SVF rather than purified or cultured ASCs
to eliminate additional processing steps [116,139,140]. There
is evidence that various components of SVF (such as vascular
endothelial cells, pericytes, and macrophages) may act syn-
ergistically with ASCs and, therefore, may be superior to
ASCs alone [138]. The application of autologous crude SVF
may be advantageous in acute clinical situations when it is
not possible to use autologous expanded ASCs, which re-
quire additional time for culturing, unless off-the-shelf
cryopreserved, allogeneic ASCs are available. The efficacy of
crude SVF versus expanded ASCs is debated by Bai et al.,
showing equal efficacy of human SVF or cultured ASCs in a
mouse model of acute MI [50], while Garcia-Olmo et al.
demonstrated the superiority of ASCs over crude SVF in the
treatment of enterocutaneous fistula in Crohn’s disease [141].
Further investigation is needed to clarify which cell fraction
may be most efficacious.

Differences in the immunophenotype between
human BM-MSCs and ASCs

It has been shown that the immunophenotypes of BM-
MSCs and ASCs are greater than 90% identical [127,142];
however, some minor differences seem to exist. A proportion
of ASCs express CD34 when freshly isolated, although the
expression of CD34 gradually declines with successive pas-
sages [35,110,111,143,144]; it may not be entirely lost [144].
CD34 is generally not expressed by adult BM-MSCs or by
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MSCs from other sources [11,35]. ASCs moderately or
strongly express CD49d (integrin o4), but not CD106 [vas-
cular cell adhesion molecule-1 (VCAM-1)], while BM-MSCs
highly express CD106, but not CD49d [145,146]. ASCs ex-
press high levels of CD54 [intercellular adhesion molecule-1
(ICAM-1)], while BM-MSCs show a minimal expression of
this marker [147,148]. BM-MSCs moderately or strongly ex-
press CD49f (integrin a6) and podocalyxin-like protein 1
(PODXL), while the expression of these surface markers is
low in ASCs [149].

In fact, there is still much debate about the immuno-
phenotypic differences between BM-MSCs and ASCs. For
example, some authors claim that CD106 is neither expressed
in ASCs [142,145] nor is its expression found in negligible
numbers of cells [149,150], while others have shown CD106
expression in ASCs [110]. Similarly, several groups have
demonstrated the expression of STRO-1 [142,151] and CD34
[110,111] in ASCs, while others have reported the absence or
low levels of STRO-1 [110] and CD34 expression [142,147,148]
in ASCs. Such apparent discrepancies can, at least in part, be
explained by differences in antibody sources (eg, different
epitopes or isoforms recognized by different antibodies)
[127,136], as well as by variables in culture medium and du-
ration, cell density, number of culture doublings, proliferative
stage of cells in culture, donor age, and various other factors
[128,150,152,153]. There are data that distinct subsets with
different immunophenotypes, proliferation capacity, and
differentiation potential exist in the general MSC population
from the same source, and the predominance of a particular
subset (with a slightly distinct phenotype) may be influenced
by various factors, such as isolation and culture protocols
(reviewed in [152] and [153]). It can also be presumed that
some immunophenotypic differences between BM-MSCs and
ASCs (including those still unidentified) may contribute to
differential responses of ASCs versus BM-MSCs to growth
factors and biomaterial scaffolds.

Differences in the differentiation potential between
human BM-MSCs and ASCs

The differentiation capacity of ASCs versus BM-MSCs is
debated with data on each side supporting the superiority of
one cell type over the other. Some studies have found that
ASCs display pronounced adipogenic differentiation com-
pared with BM-MSCs in vitro [149,154]; however; others
have not reproduced those differences in the adipogenic
differentiation capacity [112,145,146,155]. Similarly, while
some studies demonstrate that BM-MSCs are more prone to
osteogenic differentiation than ASCs in vitro [145,154,155],
others show that the osteogenic response of BM-MSCs is not
significantly greater than that of ASCs [112,146,149]. Gender
differences appear to influence the osteogenic capacity of
ASCs, with male ASCs differentiating more rapidly and
more effectively than female ASCs in vitro, moreover; the
osteogenic potential of female ASCs decreases with age,
while the adipogenic potential remains unchanged [55,128].
It was found by several groups that ASCs show decreased
chondrogenic differentiation capacity compared with BM-
MSCs in vitro [156-158]; however, other groups report no
differences in chondrogenic potential [112] or show that the
use of a greater dose combination of particular growth fac-
tors, such as transforming growth factor-p2 and insulin-like
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growth factor-1, enhances the chondrogenic potential of
ASCs (which was initially lower) to a level that is compa-
rable to that of BM-MSCs [159]. It was also shown that the
addition of bone morphogenetic protein 6 (BMP-6) enhances
the chondrogenesis of ASCs [160].

Collectively, these often conflicting data imply that MSCs
from different sources can respond differently to different
stimuli, such that conditions optimal for BM-MSC differen-
tiation might not be well suited for ASCs [136]. Culture
conditions [eg, media supplemented with either human se-
rum or fetal calf serum (FCS), or serum-free] may also affect
the differentiation potential of even MSCs of the same origin
[128]. In all likelihood, the differences in the differentiation
efficiencies are more reflective of the heterogeneity of MSC
populations (ie, the presence of distinct subpopulations)
[151,152,161,162]. Different isolation and culture protocols
used by various groups may account for the predominance
of a particular MSC subpopulation with a distinct differen-
tiation potential [151-153].

Differences in transcriptome and proteome
between human BM-MSCs and ASCs

Several studies clearly demonstrated that there are some
differences in the global transcriptomic and proteomic pro-
files of BM-MSCs and ASCs [132,145,163,164]. For example,
Noél et al. investigated the expression of 384 genes in BM-
MSCs and ASCs and found that 3.4% of the analyzed genes
were specifically expressed by only one MSC population
[145]. In addition, 9.7% of the analyzed genes were differ-
entially expressed between BM-MSCs and ASCs. Taken to-
gether, these results indicated that the differential expression
of 13.2% of genes was able to discriminate between the 2
populations, but without identifying markers specific to each
MSC population. Genes expressed only in BM-MSCs were
involved in WNT signaling and differentiation pathways
(WNT11, WNT7B, and SOX6), while genes expressed un-
iquely in ASCs were involved in cellular communication
(CCL3, FGF9, IL1R2, and KDR) and transcription control
(PAX3, SPI1, and ZNF45). Proteomic analysis (2D electro-
phoresis of the whole cell extract) of BM-MSCs and ASCs
performed by the same group showed that 23% of proteins
were expressed specifically in one or the other MSC popu-
lation; 18% of the total proteins were found to be differen-
tially expressed between BM-MSCs and ASCs [145].

Differences in the immunomodulatory activity
between human BM-MSCs and ASCs

Although it was initially shown that BM-MSCs and ASCs
exhibit very similar immunosuppressive properties in vitro
[85,148], more recent studies indicate that there are addi-
tional differences [155,165]. Bochev et al. incubated periph-
eral blood mononuclear cells (PBMC) alone or with isolated
allogeneic BM-MSCs or ASCs at a 10:1 ratio in the presence
or absence of pokeweed mitogen (PWM) and after 7 days of
culture, assessed the immunoglobulin (Ig) amount in su-
pernatants by ELISA. They found that Ig production in the
presence of MSCs was significantly inhibited only in PWM-
stimulated PBMC cultures and, most importantly, ASCs
suppressed Ig production to a much greater extent than BM-
MSCs [155]. In another study, the same group evaluated the
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effect of BM-MSCs and ASCs on the maturation and differ-
entiation of human monocytes into DCs and the secretory
profile of these DCs [165]. They found that ASCs were better
than BM-MSCs, significantly inhibiting both the differentia-
tion of blood monocytes into DCs (defined by CD83 ex-
pression) and the expression of functionally important
costimulatory molecules (CD80, CD86) on the surface of
mature monocyte-derived DCs. Moreover, it was found that
ASCs were better than BM-MSCs at stimulating the secretion
of immunosuppressive cytokine IL-10 by DCs [165]. Collec-
tively, these in vitro results suggest that ASCs can be more
effective suppressors of immune response compared with
BM-MSCs. Although the underlying mechanisms of this
phenomenon are not known, the authors postulated that
ASCs may express a different set of molecules responsible for
the immunosuppressive activity than BM-MSCs [165]. This
viewpoint is consistent with the results, showing differences
in the gene expression profile between BM-MSCs and ASCs
[145], as discussed in the previous section.

Animal Models and Preclinical Studies
with BM-MSCs and ASCs

Various animal models have been used to characterize the
biological properties and functions of BM-MSCs and ASCs in
healthily and diseased models to evaluate their therapeutic
potential and clinical safety (see Tables 1 and 2). The majority
of preclinical studies have been conducted in rodents (due to
their size, cost, access of inbred and genetically modified
strains, etc.); however, a small but growing number of stud-
ies have been performed in large animal models, although
there are often limitations in terms of cell tracking due to the
relative inavailability of species-specific antibodies [166].

Important results were obtained using BM-MSCs and
ASCs in animal models of GVHD. Sudres et al. showed that
there is no prevention of GVHD when a single dose (5x 10°,
3x10° or 4x10° of allogeneic BM-MSCs is co-administered
with hematopoietic stem cell transplantation (HSCT) in a
mouse model of GVHD [167]. In another study, Polchert et al.
[168] demonstrated that a similar co-injection of allogeneic
BM-MSCs with the BM graft could not prevent the devel-
opment of GvHD; however, if BM-MSCs were administered
at day 2 or at day 20, then they significantly increased animal
survival. The administration of BM-MSCs at day 30, on the
other hand, had no significant beneficial effect on GvHD
mortality, suggesting an optimum window of opportunity
for MSC-mediated effects. This effect was likely mediated by
IFN-vy secreted by activated and robustly proliferating donor
alloreactive T cells. It was found that no serum IFN-y could
be detected at day 0, but was present at days 2 and 20 to
activate BM-MSCs’ immunosuppressive activity. At day 30,
BM-MSCs could not manage GvHD, possibly due to their
inability to overwhelm an already too robust donor T-cell
response and/or an insufficient concentration of IFN-y for
optimal BM-MSC activation (it was found that by day 30, the
serum levels of IFN-y were considerably decreased, despite
the increased number of T cells that had reduced IFN-y se-
cretion).

Similar results have been shown using ASCs in a mouse
haploidentical HSCT model. ASCs could prevent GvHD
when they were repeatedly administered at the same doses
(5%10* ASCs) on days 0, 7 and 14, but not at later days 14,
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21, and 28, and the infusion of a single high dose (5x 10%) on
day 0 did not show a therapeutic effect [148].

Collectively, these results clearly indicate that the timing
of MSC administration plays a critical role in preventing
and/or treating GvHD. However, it should be noted that the
timing of MSC administration may be more important in an
allogeneic setting, because it has been shown that the coin-
fusion of autologous BM-MSCs with donor bone marrow
reverses GVHD in a rat model [169].

Preclinical results show that MSCs may also have a po-
tential role in the treatment of diseases and disorders that are
not associated with high morbidity or mortality. Lin et al.
[170] in a rat model of stress urinary incontinence demon-
strated a significant therapeutic effect (improvement of in-
ternal urethral sphincter function, assessed by cystometric
analysis) mediated by autologous ASCs isolated from
periovary fat pads. Once in the urethra, the tail vein-injected
ASCs were able to perform functions similar to ASCs
transplanted directly in the urethra. It was found that a small
fraction of the directly transplanted ASCs might have dif-
ferentiated into smooth muscle cells (as determined by o-
smooth muscle actin staining). However, since the great
majority of the transplanted ASCs appeared to remain un-
differentiated, their therapeutic effects were likely mediated
by trophic factors that promote host tissue regeneration.
Urethral histological analysis indicated that normal-voiding
rats from the ASC-treated group had significantly higher
smooth muscle and elastin content after treatment than ei-
ther the control group or ASC-treated abnormal-voiding rats.
There was no statistical difference in the smooth muscle and
elastin content between normal-voiding and abnormal-
voiding rats within the control group. The therapeutic effect
of allogeneic BM-MSCs was also investigated in a rat model
of stress urinary incontinence, induced by bilateral pudental
nerve dissection [171]. BM-MSCs injected bilaterally into the
proximal periurethral tissues of female rats had a significant
effect after 4 weeks on leak point pressure (LPP) and closing
pressure (CP). Moreover, in the MSC-treated group, LPP and
CP values were restored to levels of the sham group. Im-
munohistochemical analysis revealed that the injected
BM-MSCs persisted in periurethral tissues, and showed ex-
pression of smooth muscle markers (a-smooth muscle actin,
desmin, and vimentin), suggestive of the possible differen-
tiation of BM-MSCs into smooth muscle cells.

In a model of rat erectile dysfunction (induced by bilateral
cavernous nerve crush injury), the direct delivery of autolo-
gous ASCs into the rat penis was associated with a signifi-
cantly improved erectile function compared with the control
groups [172]. The erectile function was evaluated by mea-
suring the intracavernosal pressure (ICP) 5 weeks after an
injection of ASCs or phosphate-buffered saline (PBS). Fur-
thermore, there was evidence that some ASCs labeled with
5-bromo-2’-deoxyuridine (BrdU) appeared to directly dif-
ferentiate into endothelial cells and smooth muscle cells
within the erectile tissue. The authors postulated that besides
the possible direct differentiation of ASCs into the compo-
nents of erectile tissue, paracrine secretion likely contributed
to the observed effects.

Bivalacqua et al. investigated the therapeutic effect of
syngeneic wild-type BM-MSCs (wt-BM-MSCs) and geneti-
cally modified [adenovirally transduced with endothelial
NO synthase (eNOS gene)] BM-MSCs (eBM-MSCs)



MESENCHYMAL STROMAL CELL FROM BONE MARROW AND ADIPOSE TISSUE 2731
TABLE 1. BM-MSCs 1N EXPERIMENTAL DI1SEASE MODELS
Disease model Animal Preclinical outcome References
Cisplatin-induced acute renal failure Mouse Protection of renal function [245]
Ischemia-reperfusion-induced acute Rat Protection of renal function [73]
renal failure
Mesangioproliferative Rat Acceleration of glomerular healing [246]
glomerulonephritis
Stress urinary incontinence Rat Improvement of voiding function [171]
Erectile dysfunction Rat Improvement of erectile function [173]
MI Rabbit Improvement of heart function [247]
Pig [248]
Chronic myocardial ischemia Dog Improvement of heart function [249]
Dilated cardiomyopathy Rat Improvement of heart function [104]
Experimental colitis Rat Promotion of gut mucosa healing [250]
Acute hepatic failure Rat Hepatoprotection mediated by BM-MSC- [251]
derived molecules
Bleomycin-induced or endotoxin- Mouse Attenuation of lung injury [72,75]
induced lung injury
Ovalbumin-induced asthma Mouse Attenuation of acute asthma-associated [252]
inflammation
Traumatic brain injury Rat Improvement of neurological function [122]
Spinal cord injury Rat Promotion on neuronal function recovery [107]
Cerebral ischemic stroke Rat Improvement of neurological function [229]
Neurodegenerative diseases (HD, Rat Mouse Protection of neuronal loss and improvement [253-255]
AMLS, PD) of neurological outcomes
EAE (model of MS) Mouse Improvement of neurological function [256]
EAU Rat Attenuation of EAU (reduction of severity [257]
and delay of onset)
Experimental type 1 diabetes Mouse Amelioration of diabetes [258]
Pig [259]
SLE Mouse Improvement of multiple organ function [223]
Colagen-induced autoimmune Mouse No clinical effect or worsening of clinical [260] [261]
arthritis parameters [260], prevention from
developing arthritis [261]
Osteoarthritis Goat Regeneration of meniscus [69]
Critical size bone defect Dog Enhancement of defect repair [121]
Cardiotoxin-induced muscle Rat Regeneration of myofibers [39]
damage
Muscular dystrophy (model of Mouse (mdx-nude) Regeneration of myofibers [39]
DMD)
Solid organ (skin, heart, liver, and Baboon Attenuation of acute rejection and [262]
kidney) transplantation prolongation of graft survival
Mouse [263]
Rat [264-266]
Sepsis Mouse Amelioration of the disease [267]
GvHD Mouse No effect when coadministered with HSCT [167]
once
GvHD Mouse Prevention or treatment of GVHD when [168]
injected once at day 2 or 20 respectively; no
effect when injected at days 0 or 30
Persistent pain (neuropathy) Rat Long-term reversion of pain hypersensitivity [268]
Deep burn wound Pig Enhancement of wound healing [269]

MSCs, mesenchymal stem/stromal cells; BM-MSCs, bone marrow-derived MSCs; EAE, experimental autoimmune encephalomyelitis;
EAU, experimental autoimmune uveoretinitis; AMLS, amyotrophic lateral sclerosis; DMD, Duchenne muscular dystrophy; GvHD, graft-
versus-host disease; HD, Huntington’s disease; HSCT, hematopoietic stem cell transplantation; MS, multiple sclerosis; PD, Parkinson’s

disease; SLE, systemic lupus erythematosus.

administered intracavernosally in age-associated erectile
dysfunction in elderly male rats [173]. Erectile function was
assessed by measuring changes in ICP in response to cav-
ernous nerve stimulation at days 7 and 21. Histological
analysis showed that the injected BM-MSCs were present in
corporal tissue for at least 21 days. Both eBM-MSCs and wt-
BM-MSCs significantly increased erectile function compared

with the PBS injection; however, the effect of eBM-MSCs
emerged at earlier time points relative to wt-BM-MSCs (7 days
vs. 21 days). The improvement of erectile function was asso-
ciated with increased eNOS protein expression, calcium-de-
pendent (constitutive) NOS activity, and cyclic guanosine
monophosphate (cGMP) levels in erectile tissue, suggesting
that both eBM-MSCs and wtBM-MSCs increased endothelial-



2732 STRIOGA ET AL.

TABLE 2. ASCs AND SVF IN EXPERIMENTAL DISEASE MODELS

Disease model Animal/cell type Preclinical outcome References
Ischemia-reperfusion-induced Rat/ASCs Amelioration of kidney damage [270]
kidney injury
Erectile dysfunction Rat/ASCs Improvement of erectile function [172]
Stress urinary incontinence Rat/ASCs Improvement of voiding function [170]
MI Mouse/ASCs/SVF Improvement of heart function [50]
Rat/SVF [271]
Rabbit/ASCs [272]
Pig/ASCs [273]
Hindlimb ischemia Mouse/ASCs Induction of angiogenesis and [274]
recovery of limb muscle injury
Mouse/SVF [275]
Experimental colitis (model of Mouse/ASCs Amelioration of clinical and [276]
Crohn’s disease) histopathologic severity of
experimental colitis
Liver injury Mouse/ASCs (predifferentiated into Liver regeneration [277]
hepatocytes)
Spinal cord injury Rat/ASCs Improvement of motor function [278]
Dog/ASCs Improvement of neurological [279]
function
Acute ischemic stroke Rat/ASCs Limitation of brain infarction area, [230]
enhancement of neurological
function recovery
Hemorrhagic stroke Rat/ASCs Amelioration of neurological [123]
function
EAE (model of MS) Mouse/ASCs Improvement of neurological [280]
function
Huntington’s disease Rat/ASCs Retardation of striatal degeneration [281]
and behavioral deterioration
Peripheral nerve injury Rat/ASCs Increase in axonal regeneration [282]
Experimental type 1 diabetes Mouse/ASCs (predifferentiated into Amelioration of diabetes [283]
pancreatic islet-like cells)
Rat/ASCs (predifferentiated into [284]
insulin-producing cells by Pdx1
gene transduction)
Osteoarthritis Dog/ASCs Improvement of joint function [285]

Collagen-induced autoimmune Mouse/ASCs Amelioration of arthritis [286]
arthritis
Collagenase-induced tendinitis Horse/SVF Improvement of tendon [287]
architectural organization

Tendon injury Rabbit/ASCs Acceleration of tendon repair [288]
Critical size bone defects Mouse/ASCs Healing of the defect [102]

Rabbit/ASCs [106]

Rat/ASCs [289]
Full-thickness cartilage defect Rabbit/ASCs Complete healing of the defect [290]
Bilateral decortication of the L4/L5 Rat/ASCs Acceleration of posterior lumbar [291]

transverse processes
Muscular dystrophy Mouse/SVF

spinal fusion

Formation of dystrophin-expressing [275]
muscle fibers in dystrophin-
deficient mdx mice

Alleviation of acute rejection and [292]
prolongation of graft survival

Promotion of dermal wound healing [293]

Solid organ - liver -transplantation =~ Rat/ASCs

Full-thickness dermal wound Mouse/ASCs

Sepsis Mouse/ASCs Amelioration of sepsis [294]

Alergic rhinitis Mouse/ASCs Alleviation of symptoms of alergic [295]
rhinitis, inhibition of eosinophilic
inflammation

PAH Rat/ASCs Amelioration of PAH [296]

SLE Mouse/ASC Amelioration of SLE and restoration [226]
of immune homeostasis

GvHD Mouse/ASCs Prevention of GVHD [148]

Pdx-1, pancreatic duodenal homeobox 1 (gene); ASCs, adipose tissue-derived MSCs; PAH, pulmonary arterial hypertension; SVF, stromal
vascular fraction.
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derived NO biosynthesis with a subsequent increase in cGMP
signaling in the aged penile vasculature. The increase in peak
ICP and biochemical parameters (NOS activity and cGMP
levels) were significantly greater in eBM-MSCs-treated rats
compared with wtBM-MSCs-treated and PBS-treated rats.
There was evidence that the transplanted wtBM-MSCs may
have differentiated into endothelial cells [determined im-
munohistochemically (IHC) by de novo expression of eNOS
and platelet endothelial cell adhesion molecule-1 (PECAM-1)]
and smooth muscle cells (determined IHC by de novo ex-
pression of smooth muscle myosin heavy chain SM-MHC)
within the aged erectile tissue.

Clinical Application of BM-MSCs and ASCs

Promising preclinical studies using BM-MSCs and ASCs
has prompted the initiation of a number of clinical trials.
Some of the representative trials in the field of plastic sur-
gery, orthopedics, cardiovascular diseases, GVHD, autoim-
mune, central nervous system, and liver diseases are briefly
discussed in this section. Other clinical applications of MSCs
are also being investigated in the treatment of various dis-
eases, some of which are summarized in Table 3.

Plastic surgery

Autologous fat transplantation (lipoinjection) is a prom-
ising cosmetic tool for soft tissue augmentation (eg, breast,
buttock augmentation), correction of various types of de-
pressed facial deformities (eg, pectus excavatum, hemifacial
microsomia, and lipoatrophy), and for age-related facial re-
juvenation [140,174].

Autologous fat transplantation has many advantages in
plastic surgery, such as the lack of incisional scarring or
complications associated with foreign materials. However,
there are some disadvantages such as unpredictability (the
transplanted fat often loses volume) and low rates of graft
survival due to partial necrosis and atrophy during the first 6
months, post-transplantation [140,175]. Yoshimura et al.
originally showed that aspirated adipose tissue contains
fewer vessels and approximately half the number of ASCs
found in excised intact fat tissue, because during the lipo-
suction procedure, a major portion of ASCs is either left
unremoved at the donor site (ASCs are located mainly
around vessels) [176], or released into the fluid portion of the
lipoaspirate [131]. They postulated that the relatively low
numbers of ASCs in aspirated fat tissue may be associated
with low survival rate and progressive long-term atrophy of
the autotransplant [140,175,176]. To address this, in 2003,
Yoshimura et al. developed a novel strategy known as cell-
assisted lipotransfer (CAL), in which half the volume of the
aspirated fat is processed for isolation of the SVF containing
up to 40% of ASCs, and the remaining half of the aspirated
fat is harvested as graft material. The freshly isolated SVF is
added to the harvested graft, with the latter acting as a living
bioscaffold for transplantation. In this way, relatively ASC-
poor fat can be converted into ASC-rich fat, which is sub-
sequently used for lipoinjection [140,175]. It is believed that
the turnover of adipose grafts happens during the first 2-3
months after transplantation (generally, adipose tissue
turnover is usually slow, taking 2-10 years), because the
grafted nonvascularized fat tissue experiences temporary
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ischemia followed by reperfusion [138]. ASCs that are more
resistant to hypoxia may be responsible for the turnover of
adipose tissue; thus, their relative deficiency in grafts may
lead to the postoperative atrophy of the graft, which is cir-
cumvented by the CAL strategy [138,140,175].

Yoshimura et al. have performed several hundred suc-
cessful CAL procedures for breast augmentation (including
cosmetic breast augmentation, rescue for breast implant re-
placement, and postmastectomy reconstruction) without
significant side effects [140,175,177]. There were 8 cases of
cyst formation (5-15mm in diameter), 2 cases of micro-
calcification (possibly due to inappropriate tissue prepara-
tion and injection technique; the calcifications were easily
distinguished radiologically from those associated with
breast cancer), and 2 cases of ectopic fibrogenesis (in both
cases, SVF suspension was injected separately from fat
grafts) [177]. Successful CAL procedures have also been
performed on the face, hip, and hand, sometimes at multiple
sites, implying that CAL can potentially be applied for the
reconstruction or augmentation of any soft tissue defect
[138,174,175,178].

Cytori completed a phase IV postmarketing clinical trial
RESTORE-2, which evaluated the transplantation of autolo-
gous fat augmented with SVF (generated using Celution®
system, a procedure very similar to CAL) in the treatment of
recurrence-free breast cancer patients (n="71) with functional
and cosmetic breast deformities after segmental mastectomy
or quadrantectomy (lumpectomy) with or without radiation
therapy. In March 2011, Cytori released final results of the
study [179], which show that at 12 months, 85% of physicians
and 75% of patients were satisfied with the outcome of
the procedure, which is consistent with the reported 6-month
results. The satisfaction criteria included functional and cos-
metic outcomes, namely breast deformity, breast symmetry,
appearance of scarring, and skin pigmentation. There was no
defined control for this trial, as there is no generally accepted
standard of care. The comprehensive, peer-reviewed data are
expected to be published in the near future.

It has been postulated that the immunomodulatory
properties of ASCs may create a microenvironment that is
favorable for the growth of yet undetectable tumors or rare
tumor cells that were not originally removed during breast
cancer surgical treatment [180]. To date, no such case has
been reported to be directly associated with the CAL pro-
cedure or normal lipoinjection, which has been performed
worldwide in thousands of women annually [178]. However,
longer-term follow-up studies comparing the incidence of
breast cancer in ASC/SVF-implanted versus untreated con-
trols are needed to thoroughly evaluate this possibility [166].

The use of BM-MSCs in plastic surgery is less common
and is mainly confined to wound therapy [181,182]; for ex-
ample, a dose-dependent response was observed in patients
with acute wounds from skin cancer surgery and chronic,
long-standing nonhealing lower extremity wounds receiving
cultured BM-derived MSCs along with fibrin polymer spray
[181]. However, ASCs/SVF also emerge as a very promising
tool for wound treatment, skin rejuvenation, and skin engi-
neering (reviewed in [183] and [184]). For example, it has
been demonstrated that purified autologous lipoaspirate
transplant dramatically increased the healing of oncologic
radiotherapy-induced chronic, degenerative dermal tissue
damage such as fibrosis, atrophy, ulcers, and retraction [185].
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It would seem reasonable that ASCs/SVF are preferred in
plastic surgery, as it would be quite arguable to use BM-
MSCs when the therapeutic efficacy of ASCs is demon-
strated, especially for clinical situations or conditions that are
not life threatening, because marrow harvesting is a more
invasive and potentially donor-site morbid procedure.

Orthopedics

The capacity of articular cartilage to heal is limited (due to
low mitotic potential of chondrocytes in vivo); thus, defects
in the joint cartilage progress to osteoarthritis [186]. Tradi-
tionally, articular cartilage defects are treated by abrasion,
microfracturing, mosaic plasty, or cell-engineering strategies
such as autologous culture-expanded chondrocyte implan-
tation (ACI). ACI is associated with difficulties, such as ob-
taining a sufficient number of autologous chondrocytes,
donor-site morbidity, and poor histological repair [186]. To
address these limitations, the use of autologous BM-MSCs
was investigated. Wakitani et al. tested the role of autolo-
gous BM-MSCs in the repair of large articular cartilage de-
fects in the osteoarthritic knees of patients (n=24) who
underwent high tibial osteotomy [187]. There were no sig-
nificant differences in clinical improvement between patients
treated with BM-MSCs along with periosteal flap (n=12) and
the controls treated with periosteal flap alone, although the
arthroscopic and histological grading score was higher in the
BM-MSC-transplanted group. The same group also reported
using autologous BM-MSCs in the repair of full-thickness
articular cartilage defects of patella in 2 patients [188], and
articular cartilage defects in the patello-femoral joint in the
knees of 3 patients [189]. Autologous BM-MSCs also pro-
moted the repair of large, full-thickness articular cartilage
defect in the medial femoral condyle of a 31-year-old athlete
[186]. The role of ASCs in the treatment of cartilage defects is
investigated in clinical trials (NCT01399749, NCT01300598 at
www.clinicaltrials.gov; see Table 3).

Both BM-MSCs and ASCs have been used for the suc-
cessful repair of various bone defects, including critical size
defects in the long bone [190], hard palate reconstruction
[191], and craniomaxillofacial defects [128,166].

BM-MSC have been shown to have superior chon-
drogenitc potential to ASCs in vitro differentiation assays
[156-158], although the modulation of in vitro factors allows
for the chondrogenic differentiation of ASCs that are com-
parable to BM-MSCs [159-160]. Similarly, some authors
claim that BM-MSCs are more prone to osteogenic differen-
tiation than ASCs in vitro [145,154,155], whereas others
demonstrate that the osteogenic potential of BM-MSCs is not
significantly greater than that of ASCs [112,146,149]. How-
ever, the osteogenic capacity of ASCs seems to decline with
age, and this phenomenon is more prominent in women
[128]. The in vitro data suggest that BM-MSCs may, thus, be
better suited to repair cartilage defects, although it is not
clear whether BM-MSCs or ASCs actually affect cartilage or
bone repair by differentiation into chondrogenic or osteo-
genic cells. If paracrine factors are implicated in the thera-
peutic effects of these MSCs, there would be little difference
between the 2 cell types.

Therapeutic potential and the clinical experience of MSC
application for orthopedic diseases are reviewed in greater
detail in [192], and summarized in Table 3.
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Myocardial infarction

Chen et al. investigated the use of autologous BM-MSCs for
treating acute MI in 69 patients who underwent primary per-
cutaneous coronary intervention (PCI) [193]. Patients were ran-
domized into 2 groups, and 34 patients received an
intracoronary BM-MSC injection, with controls receiving saline
injections. Three months of follow-up showed that both wall
movement velocity over the infarcted region and left ventricular
ejection fraction (LVEF) were significantly increased, while re-
gional functional defects (percentage of hypokinetic, akinetic,
and dyskinetic segments), perfusion defects (evaluated by pos-
itron emission tomography), and left ventricular end-systolic
and end-dyastolic volumes significantly decreased in the BM-
MSC-treated group when compared with the control group.

Mohyeddin-Bonab et al. investigated the therapeutic effi-
cacy of autologous BM-MSCs in 16 patients with old MI
undergoing coronary artery bypass grafting or PCI [194].
They showed that while patients receiving local injections of
BM-MSCs (n=8) had an increased LVEF compared with the
control group, this difference was not statistically significant.
However, there were significant differences in terms of
clinical improvement (as assessed by the New York Heart
Association classification) and reduced infarction size in the
BM-MSC treated group relative to controls.

A randomized phase I clinical study assessing the sys-
temic delivery of allogeneic BM-MSCs (Prochymal™) with-
out immunosuppression after acute MI similarly showed
significant improvements in symptomatic global assess-
ments, cardiac arrhythmias, and pulmonary function in the
MSC-treated groups relative to controls (receiving saline)
without concomitant differences in the ejection fraction be-
tween the 2 groups [117]. Subset analysis revealed that LVEF
was improved as assessed by magnetic resonance imaging in
MSC-treated MI patients compared with placebo controls 1
year after treatment, although the difference was again not
statistically significant.

There are emerging data on the use of ASCs and the more
heterogeneous SVF in cardiac applications. Results from the
APOLLO trial show that the intracoronary delivery of au-
tologous ASCs is safe [195]. Similar to the early phase I/1I
autologous and allogeneic BM-MSC trials, there does not
appear to be significant efficacy in terms of LVEF improve-
ment between cell-treated and control groups.

It would appear that ASCs might be better suited than BM-
MSC:s for cardiac applications at this early stage, as evidenced
by their superior angiogenic properties in vivo [115]. Other
studies also suggest that while the 2 cell types are equally adept
at modulating an anti-inflammatory environment through se-
creted factors, ASCs appear to induce significant improvement
ininfarct area and LV infarct wall thickness, compared with the
BM-MSC-treated and control groups [196].

Larger phase II/III trials will be needed to compare the
efficacy of BM-MSCs and ASCs in a clinical setting. The
therapeutic potential and clinical experience of MSC appli-
cation for the treatment of cardiovascular (mainly cardiac)
diseases are reviewed in greater detail in [198-200], and
summarized in Table 3.

Graft-versus-host disease

Acute GvHD is a significant cause of morbidity and
mortality — after allogeneic HSCT. Treatment with
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corticosteroids remains the gold standard for acute GvHD;
however, even with prompt initiation, it is suboptimal [118].
Moreover, the response rate to steroid therapy is 30%-50%
[200], and 30%-60% of the patients develop steroid-resistant
GvHD [201]. Several clinical studies have demonstrated that
BM-MSCs are effective in a considerable proportion of pa-
tients with acute de novo GvHD (combined with steroid
therapy) [118] and steroid-resistant GvHD [200,202-205] with
no detectable side effects or ectopic tissue formation. Moreover,
both haploidentical and third-party (HLA-mismatched) BM-
MSCs can be safely and effectively used to treat de novo and
steroid-resistant acute GvHD [118,200,202-205]. Several recent
reports indicate that BM-MSCs may also be effective in man-
aging chronic GvHD [206-208].

In contrast, the Osiris-sponsored phase III trial
(NCT00366145 at www.clinicaltrials.gov), using allogeneic
BM-MSCs (Prochymal) in the treatment of patients (1=244)
with steroid-resistant acute GvHD, failed to meet the primary
end-point (complete response of >28 days duration) [209],
although by day 100, Prochymal showed significantly im-
proved overall response rates (both complete and partial) in
steroid-refractory GvHD, involving liver (76% vs. 47%,
P=0.03) and gastrointestinal (82% vs. 68%, P=0.03), but not
skin (78 vs. 77%, P=0.9) [210]. The treatment of patients with
GvHD affecting all 3 organs (skin, liver, and gut) resulted in a
63% overall response rate in the Prochymal group, while none
of the placebo-treated patients responded (P<0.05). Ad-
ditionally, patients treated with Prochymal had significantly
less progression of liver GvHD compared with placebo (37%
vs. 65%, P=0.05). There were no significant differences in the
incidence of infection, recurrent malignancy, and toxicities
between the groups. It should also be noted that there were
more patients with severe (grade IV) GvHD in the Prochymal
group than in the control group. Collectively, these results
suggest that the addition of Prochymal is safe and shows
improvement in patients with steroid-resistant acute GvHD
involving visceral organs; however, the durability of the re-
sponse remains questionable.

Similarly, the use of Prochymal appeared to be ineffective,
as per the clinical trial (NCT00562497 at www.clinical-
trials.gov) evaluation criteria in treating patients (n=192)
with de novo GvHD [209].

ASCs (both haploidentical and HLA-mismatched) have
been shown to be effective in the salvage therapy of 6 pa-
tients with severe steroid-resistant acute GvHD [119]. Com-
plete response was achieved in 5 patients (1 patient did not
respond to ASC treatment); 4 of them were alive after a
median follow-up of 40 months (1 patient died of leukemia
relapse). All 4 survivors were in good clinical condition and
free of their hematological malignancy. No side effects were
observed after ASC treatment. Two pediatric patients with
severe steroid-resistant GvHD were also successfully treated
with intravenous infusions of ASCs from HLA-mismatched
unrelated donors [211]. A larger, placebo-controlled trial
using varying doses of autologous ASCs is currently un-
derway (NCT01056471 at www.clinicaltrials.gov) and will
provide some answers on the efficacy of ASCs in treating
GvHD.

It should be noted that several studies showed that MSCs
are not effective for preventing acute GvHD if they are co-
transplanted with HSCs (reviewed in [95] and [212]). This is
consistent with results of preclinical studies [148,167,168],

2739

implying that MSCs need to be “switched-on” by an evolv-
ing allogeneic immune response in the host [168]; conversely,
transplanting after the immune response has been fully
mounted is also ineffective, suggestive of an optimum win-
dow of opportunity [168]. Thus, the conflicting results in the
GvHD trials may be explained by considering the cell dose,
timing, and duration of treatment.

Clinical aspects of MSC application for the treatment of
GvHD are reviewed in greater detail in [212-214], and are
summarized in Table 3.

Autoimmune diseases

MSCs are also being investigated in patients with various
autoimmune diseases.

Crohn’s disease. Autologous BM-MSCs have been used
for the treatment of fistulizing Crohn’s disease. Ciccocioppo
et al. conducted a phase I trial in which autologous BM-
MSCs were locally injected to 10 patients with fistulizing
Crohn’s disease (9 patients with complex perianal fistulas
and active rectal disease and 1 patient with multiple en-
terocutaneous fistulas) [215]. Patients were followed up for
12 months with no adverse effects reported. Seven patients
(including the one with multiple enterocutaneous fistulas)
had sustained complete fistula closure without signs of fi-
brosis, and 3 patients showed a partial response. A reduction
of Crohn’s disease activity index (CDAI) and perianal dis-
ease activity index (P<0.01 for both) was observed for all
patients. Seven of 9 patients with perianal disease underwent
lower endoscopy at the end of the follow-up, and complete
healing of the rectal mucosa was evident, relative to the in-
flammation present before BM-MSC treatment. Additionally,
the percentage of mucosal and circulating regulatory
FOXP3* T cells significantly increased during the treatment
and remained stable until the end of the follow-up. In an-
other study, Duijvestein et al. investigated the role of intra-
venously infused autologous BM-MSCs for the treatment of
patients (1=9) with refractory luminal Crohn’s disease [216].
Disease remission (ie, CDAI less than 150) was not achieved
in any patient. Three of the 9 patients showed a reduction
of 270 points in CDAI 6 weeks post-treatment (baseline
median CDAI was 326); however, the disease worsened
significantly in 4 patients and required additional treatment.
It was also shown that BM-MSC treatment was associated
with an increase in CD4 " regulatory T cells and with a de-
crease in inflammatory cytokine levels in mucosal biopsies.
The results of these 2 studies suggest that the local admin-
istration of BM-MSCs may be superior to systemic admin-
istration, although a phase II study using systemically
administered allogeneic BM-MSCs (Prochymal) in 9 patients
with refractory moderate-to-severe Crohn’s disease also
showed promising results [217]. All 9 patients had CDAI
scores that significantly decreased by day 28, and 3 patients
(83%) achieved a clinical response (reduction in CDAI>100
points) by day 14. No serious adverse events were observed.
Based on these promising results, Osiris had started a phase
III clinical trial (NCT00482092 at www.clinicaltrials.gov; see
Table 3).

Garcia-Olmo et al. conducted a phase I clinical trial in
which they investigated the role of locally administered au-
tologous ASCs (a single dose of 3-30x10° cells in combina-
tion with fibrin glue) for the treatment of fistulizing Crohn’s
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disease [218]. Four patients with 9 fistulas of different types
(rectovaginal, enterocutaneous, and perianal) were enrolled
in the study. Eight of the 9 inoculated fistulas were followed
weekly for at least 8 weeks. External openings of 6 fistulas
(75%) were closed (covered with epithelium) at week 8,
while 2 remaining fistulas showed a partial closure with
decreased output flow. No adverse effects were observed
during the average follow-up of 22 months. Another ran-
domized phase II clinical trial performed by the same group
compared the efficacy of intralesionally administered auto-
logous ASCs (20 x 10° cells) plus fibrin glue versus fibrin glue
alone (control) for the treatment of complex perianal fistulas
associated with Crohn’s disease, and of cryptoglandular
(non-Crohn’s) origin [219]. Fistula healing was evaluated at 8
weeks and 1 year; if healing was not observed at week 8,
then an additional dose of ASCs (40x10° cells) plus fibrin
glue or fibrin glue alone was administered. In the Crohn’s
disease group (14 patients of 49), complex fistulas were
closed in 5 of the 7 (71%) patients treated with ASCs plus
fibrin glue (1 patient had recurrence at 1 year follow-up
[219,220]), while only 1 of the 7 (14%) patients responded in
the control group. Statistical significance was not reached in
the Crohn’s subgroup (due to small sample size). A phase III
trial investigating the safety and efficacy of allogeneic ASCs
for the treatment of complex perianal fistulas in patients with
Crohn’s disease is expected to start in the first half of 2012
[221].

BM-MSCs isolated from patients with Crohn’s disease
were shown to have a similar morphology, phenotype,
growth potential, and, most importantly, immunomodula-
tory capacity compared with BM-MSCs isolated from heal-
thy donors [216,222], suggesting that autologous therapy
might be appropriate. Given the similar immunomodulatory
profiles of BM-MSCs versus ASCs, it would appear that both
cell types are promising for this application with ASC being
superior due to their easier access, greater amounts and more
pronounced immunosuppressive properties as already dis-
cussed in this review.

Systemic lupus erythematosus. Sun et al. [223] demon-
strated that the infusion of allogeneic BM-MSCs recon-
stituted the bone marrow osteoblastic compartment and
reversed multiorgan dysfunction more effectively than cy-
clophosphamide-mediated immunosuppression in mice.
Based on these promising preclinical results, they treated 4
patients with cyclophosphamide and glucocorticoid therapy-
refractory systemic lupus erythematosus (SLE) using allo-
geneic BM-MSCs and showed a stable 12-18 month disease
remision without any side effects. They also found a signif-
icant increase in the peripheral blood CD4"FOXP3" T-cell
population 3 months post BM-MSC transplantation [223].

In a separate study, Liang et al. treated 15 patients with
persistently active, treatment-refractory SLE using allogeneic
BM-MSCs [224]. Decreased SLE Disease Activity Index
(SLEDAI) score and reduced 24 h proteinuria were seen in all
patients after the treatment with concurrent reduction in
doses of prednisolone and immunosuppressants. At a 12-
month follow-up the mean SLEDAI was significantly de-
creased (12.2+3.3 vs. 3.2+2.8 at baseline, n=12, P<0.05);
moreover, it remained less than 8 points in 12 of 13 patients,
and 4 patients showed complete remission in disease activity
(SLEDAI score was 0), which lasted for another 24 months in
1 of these 4 patients. At a 12-month follow-up, mean 24h
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proteinuria was also significantly decreased (858.0+800.7 mg
vs. 2505.0+1323.9mg at baseline, n=12, P<0.01); it signifi-
cantly decreased in 7 patients and normalized in 5 patients.
Anti-dsDNR antibodies were significantly decreased in 11 of
15 (73%) patients at 1 and 3 months post-transplantation.
Treatment was also associated with a significant increase in
peripheral blood CD4"FOXP3™" Treg cells.

Interestingly, Carrion et al. treated 2 SLE patients with
autologous BM-MSCs and found that there was no positive
effect on disease activity, despite the fact that circulating
Treg cells were markedly increased in peripheral blood and
BM-MSCs suppressed activation and proliferation of pe-
ripheral blood lymphocytes in vitro [225]. These results are
consistent with preclinical studies showing impaired BM-
MSC function in mice with SLE [223]. Collectively, these
initial results suggest that allogeneic BM-MSCs may be su-
perior to autologous ones in the treatment of SLE patients.

To our knowledge, the role of ASCs in the treatment of
SLE patients has not been investigated, although a recent
preclinical study showed that long-term serial administra-
tion (28 times) of human ASCs effectively ameliorated SLE
(especially early-stage) and restored immune homeostasis in
mice [226].

Multiple sclerosis. Mohyeddin-Bonab et al. reported the
use of intrathecal injections of autologous BM-MSCs for the
treatment of 10 patients with refractory progressive multiple
sclerosis (MS) [227]. Their Expanded Disability Status Scale
(EDSS) score ranged from 3.5 to 6 over a mean 19-month
follow-up. One patient improved (EDSS score decreased
from 5 to 2.5), 4 patients showed no change in EDSS, and 5
patients showed progressive disease (their EDSS score in-
creased in the range from 0.5 to 2.5). In the monthly neuro-
logical functional system assessment, 6 patients showed
some degree of improvement in their sensory, pyramidal,
and cerebellar functions; 1 patient showed no difference in
clinical assessment; and 3 deteriorated. The results of MRI
assessment after 12 months were also mixed: 7 patients with
no difference, 2 showed an extra plaque, and 1 patient
showed a decrease in the number of plaques.

Riordan et al. presented 3 case reports of a physician-
initiated compassionate-use MS treatment using 2 intravenous
infusions of autologous SVF cells and multiple intravenous
and intrathecal infusions of allogeneic CD34™" cells and BM-
MSCs [116]. BM-MSCs were third-party unmatched, and
CD34" cells were matched by mixed lymphocyte reactions.
Infusions were performed within a 9-10 day period and were
very well tolerated without any significant side effects. There
was a marked improvement in patient-reported clinical results.

Given the autoimmune involvement of MS, it is antici-
pated that the immunomodulatory properties of both ASCs
and BM-MSCs may be effective, although trials controlling
for the route of administration, source of cell, cell prepara-
tion, and dose are needed to properly answer efficacy
questions.

Type I diabetes mellitus. Twenty-five patients with type I
diabetes receiving intra-pancreatic injections of autologous
BM-MSCs and hyperbaric oxygen treatment showed im-
proved metabolic control and reduced insulin requirements
12 months later [228].

A similar pilot study using ASCs has demonstrated the
feasibility and safety of this approach. Vanikar et al. in-
traportally injected allogeneic ASCs along with cultured
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bone marrow (isolated from a related donor) in 11 insulin-
dependent diabetes mellitus patients [120]. The mean follow-
up was 7.3 months. Clinical parameters significantly im-
proved as shown by (1) decreased mean exogenous insulin
requirement (1.14 U/kg/day vs. 0.63U/kg/day at baseline,
P=0.009); (2) decreased mean levels of glycosylated hemo-
globin (8.47% vs. 7.39%, P=0.03); (3) raised serum c-peptide
levels (0.1ng/mL vs. 0.37ng/mL, P=0.05); and (4) dis-
appeared diabetic ketoacidosis events with a mean 2.5kg
weight gain on a normal vegetarian diet and physical activities.
No side effects were observed. Questions on whether ASCs or
BM-MSCs of an autologous or allogeneic nature are better
suited for type I diabetes, a fundamentally metabolic disorder,
remain to be answered in larger, controlled clinical trials.

Ischemic central nervous system injury

Several preclinical animal studies have clearly demon-
strated the beneficial effects of MSCs after an ischemic
stroke [229,230], although clinical experience is still rela-
tively nascent. Lee et al. conducted a long-term (up to 5
years) observer-blinded follow-up study that evaluated the
safety and efficacy of intravenous BM-MSC infusion in
patients with severe middle cerebral artery ischemic stroke
[231]. They found that the mortality rate in the MSC group
(n=16) was significantly lower than in the control group
(n=36). There was a tendency for more patients with an
improved outcome in the MSC group [evaluated by modi-
fied Ranking Scale (mRS)]. Moreover, the proportion of
patients with an improved mRS value significantly in-
creased in the MSC group, but not in the control group.
There was no difference in comorbidities during the follow-
up period, as well as no significant adverse effects were
observed after BM-MSC treatment. Clinical improvement in
the MSC group significantly correlated with (1) the serum
levels of stromal cell-derived factor-1o at the time of MSC
treatment, and (2) the degree of involvement of the sub-
ventricular region of the lateral ventricle. The authors con-
cluded that BM-MSCs therapy may improve outcomes after
ischemic stroke depending on the specific characteristics of
an individual patient.

To our knowledge, no clinical trials investigating the po-
tential of ASCs/SVF in the treatment of ischemic CNS injury
have been reported to date, although a recent preclinical study
demonstrated that ASCs are superior to BM-MSCs in the
treatment of ischemic stroke in a mouse model [232], perhaps
due to the superior angiogenic potential of ASCs [115].

The current status of MSC application progress and pos-
sibilities for the treatment of ischemic stroke are concisely
reviewed in [233].

Liver diseases

Kharaziha et al. performed a phase I/1I clinical study, in
which 8 patients with end-stage liver disease (cirrhosis of
different ethiologies) were treated with autologous BM-
MSCs [234]. The cells were induced to differentiate into
hepatocyte progenitors (as defined by the expression of al-
bumin and o-fetoprotein) and were then injected into either
the portal vein or peripheral vein. Liver function and clinical
parameters evaluated at baseline and 1, 2, 4, 8, and 24 weeks
after an injection of predifferentiated BM-MSCs showed
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significant improvement (as verified by the Model for End-
Stage Liver Disease Score and appropriate serum parameters
for liver function). No adverse effects were noted. All pa-
tients had an improved general condition and quality of life,
which was noted 2 months after the injection. Other clinical
studies investigating the use of BM-MSCs or BM mononu-
clear cells for the treatment of liver diseases are also briefly
discussed in [234]. Significantly, there are some concerns that
in liver pathology, MSCs may show undesirable effects or
even worsen the disease because of their profibrogenetic
potential  [235]. Two clinical trials (NCT00913289,
NCTO01062750 at www.clinicaltrials.gov) investigating the
role of SVF in the treatment of liver cirrhosis were suspended
(reasons were not specified).

Future Perspectives of Actual Practical
Clinical Aspects

Many issues remain to be elucidated in understanding
MSC biology, mechanisms of action, and clinical application;
however, here, we would like to focus on 3 practical clinical
aspects.

First, in the majority of cases, MSCs are traditionally ex-
panded using 10% FCS. Although FCS batches are routinely
prescreened for biosafety, theoretically FCS may be respon-
sible for the transmission of prions and still unidentified
zoonoses; additionally, there is always the risk of an immune
reaction in the host to the xenogeneic materials, especially if
repeated infusions are needed [134]. Thus, an FCS-free me-
dium should be introduced into routine clinical practice as
soon as possible. This is feasible, as several clinical studies
have already successfully used human autologous serum
and/or platelet lysate [119,120,191,203,234]. Moreover, it
was shown that both BM-MSCs [236] and ASCs [237] ex-
panded in either human autologous serum (or platelet lysate)
or FCS had a comparable morphology, immunophenotype,
and proliferative and differentiation capacity, although
functionality needs to be more fully assessed. Allogeneic
human serum may be used as an alternative, and may prove
to be superior to autologous serum in some cases [238].
Further investigation is needed, as it has been shown that the
use of human serum versus FCS is associated with a differ-
ential gene expression profile in MSCs [238,239], and it will
be necessary to correlate the possible influences of these
differences on potential clinical implications, if any. Another
alternative would be the use of serum-free and xeno-free cul-
ture medium for the cultivation of MSCs, and this approach
appears to be feasible, as already demonstrated [240,241], al-
though the addition of growth factors may promote prolifera-
tion to these cells, and raise tumorogenic concerns.

Second, the timing (as well as dose and route) of MSCs
infusion should be clearly determined in various pathologies.
As discussed in this review, and also previously reviewed in
[85], the timing of MSC infusion seems to be one of the crucial
factors determining the therapeutic efficacy of MSCs in GvHD.
Similarly, in an acute MI setting, the administration of MSCs
may be effective before the development of fibrosis. However,
the administration of MSCs very early after the acute MI may
be ineffective, because there is significant inflammation and
cellular necrosis at this time, and MSCs may compete for
nutrients in an ischemic environment and, thus, negatively
impact cardiomyocyte survival in the infarct zone [197].
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Third, various studies report contradictory results re-
garding the MSC effect on tumor formation—some studies
show evidence of tumor promotion by MSCs, whereas others
demonstrate apparent tumor-suppressive activity of MSCs
(reviewed in [242]). Due to their ambiguous role and still
unresolved impact on tumor growth, MSCs should not be
used for patients with cancer (although at least 2 clinical
trials already investigate their use in cancer patients, albeit
not directly for cancer treatment, see Table 3). On the other
hand, properly modified or conditioned MSCs may serve as
an invaluable tool in anticancer therapy; owing to their tro-
pism for tumors, MSCs may be used as cellular delivery
vehicles for the targeted delivery of various antitumor agents
(reviewed in [243] and [244]). Although to date no tumor
formation was reported in human recipients of MSCs, more
clinical experience, sensitive karyotype analysis, and long-
term follow-ups are needed to be sure that MSCs from
various sources do not form de novo tumors through
transformation when administered to patients.

Concluding Remarks

MSCs are emerging as a novel powerful tool for the treat-
ment of various diseases, some of which have limited treat-
ment options. Although MSCs are found in virtually all
organs, BM-MSCs and ASCs/SVF are probably the best
characterized and most commonly used in clinical practice.
Although there are some differences between BM-MSCs and
ASCs, in their gene expression profile, their angiogenic po-
tential, and secretion of factors, preclinical and clinical data
support the use of both MSC populations in various clinical
applications; safety in pilot trials has largely been established,
and efficacy is being evaluated in a few Phase III trials (eg, for
Crohn’s disease). In general, ASCs may appear to be a better
choice for clinical application compared with BM-MSCs, as
they can be obtained in substantially greater amounts (up to
500-fold). In addition, adipose tissue is more abundant, more
easily accessible, and harvesting is associated with lower
morbidity as compared with the bone marrow. However in
certain pathologies, there may be the advantage of using one
cell population over another, and this finding will emerge
along with further clinical investigations.
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